

WE MUST MOVE FORWARD IN THREE AREAS: LOCAL, STATE-LEVEL, AND INSTITUTIONAL ADJUSTMENTS TO SUPPORT DECARBONIZATION

Figure 3: Adaptation, mitigation, and adaptive capacity

Adapt our cities to include more resilient and cleaner infrastructures

Ensure our citizens are knowledgeable and informed on their carbon footprint and energy consumption, including greening our transport in PA

Adaptation

Change in land use, relocation

Emergency & business continuity planning

Upgrades or hardening of building and infrastructure

> Residential programs promoting adaptation

> > Health programs

Mitigation

Seal Buildings

Green Infrastructure

Water and Energy Conservation

> Smart Growth

landfill and digester gas

Carbon sinks

Energy conservation and efficiency

Renewable energy

Sustainable transportation, improved fuel efficiency

Capture and use of

Help our state transition its electricity usage to meet Paris agreement targets

> Make sure our governments help to lead by example and provide the support needed to monitor, revise, and improve upon the path to decarbonization

> > Source: Kelly, 2015

YET WE KNOW THAT THE ENERGY THAT WE CONSUME COMES FROM WAY BEYOND OUR BORDERS; THEREFORE, WE NEEDED TO UNDERSTAND OUR "EMISSIONS FOOTPRINT" VS WHAT WE CAN TANGIBLY CHANGE

- Pennsylvania is suggested under the CPP to reduce its emissions by 29 million tons, or 24 percent below 2012 levels, by 2030
- This represents a 33% reduction in CO2 from 2005 levels
- PA is nearly halfway there- we cut emissions by 16% from 2005-2012
- 38% of PA's electricity generation came from nuclear power, 36% from coal, and 22% from natural gas in 2011; however, coal went down (so did CO2!)
- Hydropower, wind, and solar make up roughly 4% of all other power
- Pennsylvania will need to build 4,370 MW of wind capacity and nearly 6,400 MW of solar capacity including almost 2,000 MW of rooftop solar on homes and businesses to meet the CPP goals; therefore a large portion of our goals depends on the state's energy shift
- PA has Renewable Portfolio Standard Policies: 18% requirement by 2021
- PA also has Solar/Distributed integration requirements including 0.5% PV by 2021

DEFINING PITTSBURGH'S ENERGY FOOTPRINT WITHIN THE PA CONTEXT

WHEN LOOKING THEREFORE AT THE STATE OF PA'S EMISSIONS PROFILE, AND PITTSBURGH'S ENERGY CONSUMPTION WE CAN BEGIN TO ESTIMATE THE EMISSIONS FOOTPRINT FOR EACH SECTOR

Residential Carbon Footprint	Commercial Carbon Footprint	Industrial Carbon Footprint
222,641*	567,517*	48,020*

BUILT ENVIRONMENT ENERGY CONSUMPTION

ELECTRICITY CONSUMPTION 4,147,331 MWh

AVERAGE ENERGY USE INTENSITY 145 kBtu/ft²

BREAKDOWN OF SQUARE FOOTAGE OF NON-RESIDENTIAL BUILDINGS

Source: Siemens, 2019

	1st Generation	2nd Gen	3rd Gen	4th Gen
BAT Time	1880-1930	1930-1980	1980-2020	2020-2050
	Coal, steam, boilers,	Coal and oil-	Large-scale	Low
	some CHP	based CHP	CHP,	temperature
		and some heat-	distributed	heat recycling
		only boilers	CHP, biomass	and renewable
			and waste, or	sources
Heat			fossil fuel	
Production			boilers	
	CHP as heat source	CHP as heat	CHP as heat	CHP systems
		source	source, some	integrated with
			electric boilers,	heat pumps
			and heat	and operated
			pumps in	on regulating
			countries with	and power
			temporary	reserve
Integration			electricity	markets as
with			surpluses. Few	well as spot
Electricity			CHP's on spot	markets.
Supply			markets.	

DISTRICT VS CITY?

Who bears the burden?

Comparing case-study model with Danish district model

Baselining the neighborhood and estimating demand profiles (now and future)

Investigating governance mechanisms against SDG goals

Source: Uptown EcoInnovation District

Economic Parameters			
LCOE Discount Rate	4%		
Net Tax Factor	1.17		
Calculation Rate	4%		
VAT	5%		
Distortion Loss	20%		
Net Price Index	0.70%		
Long-Term Loan Rate	4%		
Short-Term Loan Rate (debt)	2%		
Short-Term Loan Rate (profit)	0%		

Source: Velagapudi, Kelly-Pitou, Tipper, 2019

Easy access to data and information in regards to energy consumption related to home, business, and buildings

Report, monitor, communicate consumption data

Identify the best technical efficiency changes or BAT at the local level for citizens

Support the upfront capital gap required for deployment

