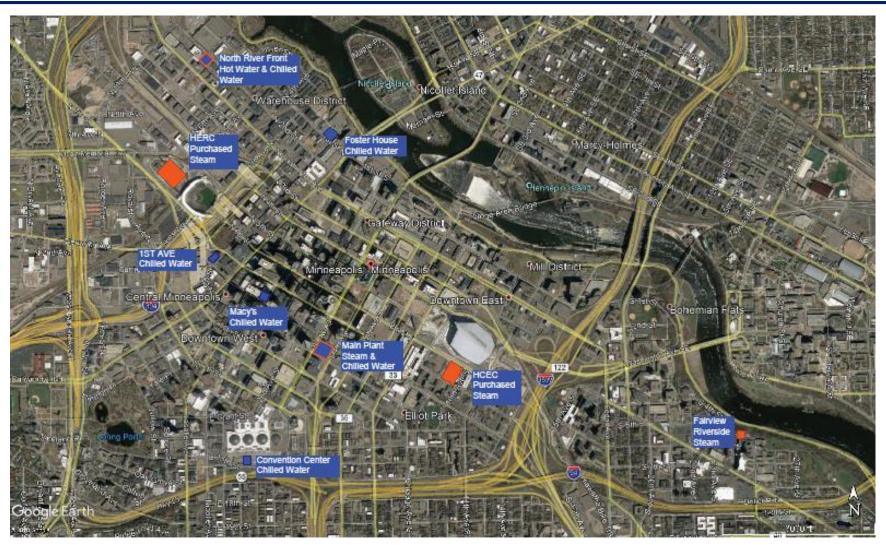


Control System Upgrade at Energy Center Minneapolis

- System Historical Overview
- Project Drivers
- Project Options Considered
- Selected Project Scope
- Project Schedule
- Project Implementation
- Project Cost
- New System Key Facts
- Lessons Learned
- Questions

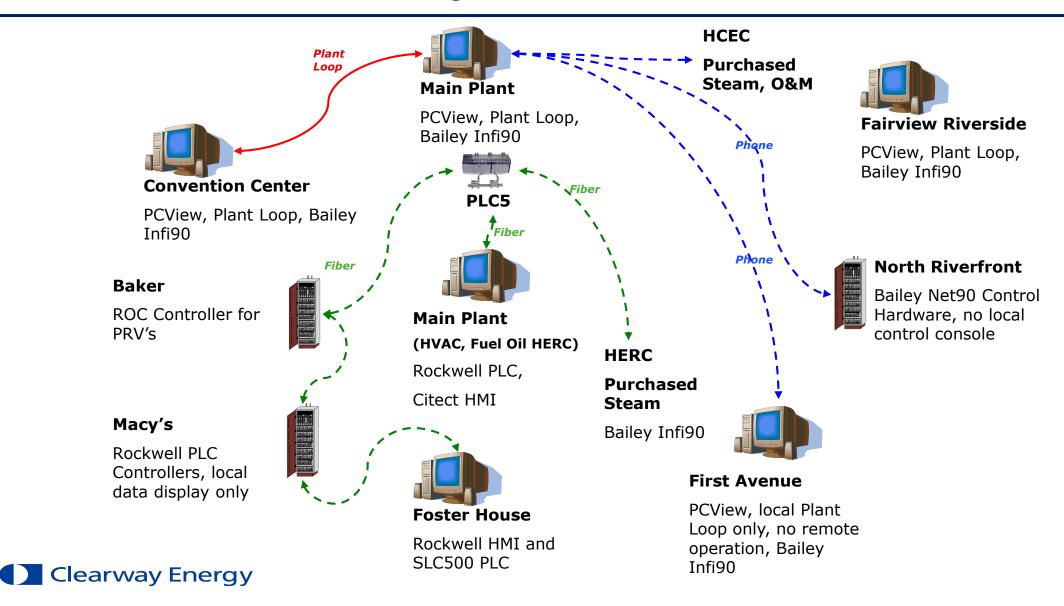
System Overview

- Steam, Hot Water and Chilled water district energy system
- Commenced Operations in 1972
- Serves the downtown business core in Minneapolis MN plus two remote plants
- Three steam plants, one hot water plant, six chilled water plants
- 10 Boilers, 17 chillers
- Purchased steam from two Hennepin County plants
- Electric, steam turbine, and gas engine drive chillers
- Natural gas/#2 Fuel Oil boilers
- 660,000 lb/hr peak steam demand
- 30,000 Ton peak cooling demand

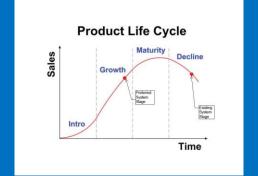

2

System Historical Overview - DCS

- Bailey Infi90 DCS System Installed in 1980's
 - > System installed in five plants
 - > One plant connected via coax, two DSL, one stand alone
 - Redundant Controllers and HMI's, Non-Redundant I/O
 - Multiple Controller and HMI Upgrades made over time.
- Allen Bradley PLC Systems Installed in mid 1990's
 - > Systems installed in two plants
 - > Same family but different age/version controllers
 - Connected via Fiber
 - Non-redundant controllers and HMI's, Non-Redundant I/O
 - No controller and HMI upgrades made over time.
 - > Primarily used for HVAC, support systems and as communications interface to local vendor controls



Overview – System Map



Overview – Current Configuration

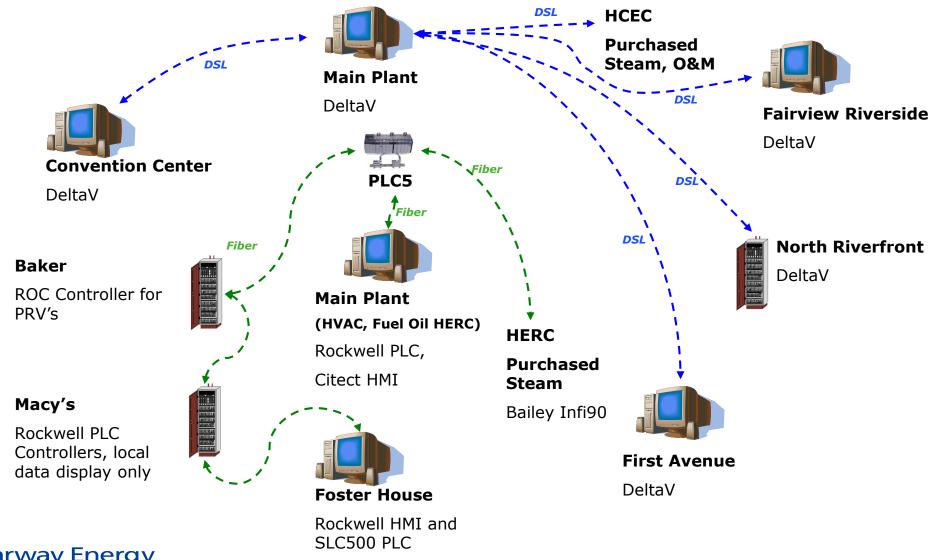
Project Drivers

- 1980's vintage Core DCS system that had been periodically upgraded was reaching true
 - economic end of hardware and software life.
- Software and equipment maintenance costs increasing
- Loss of experienced technical support personnel
- HMI servers reaching end of life
- Multiple systems/vendors that need to communicate
- Level of investment required to bring current system up to date significant enough to justify evaluating complete or partial replacement with alternate vendors
- Access advanced control, monitoring, diagnostic, and record keeping capabilities of newer
 DCS systems

Main Project Options Considered – Core DCS System

- 1. Upgrade/Replace Controllers, Power Supplies and HMI's with current manufacturers most current compatible products. (keep I/O and backplane)
- 2. Upgrade/Replace Controllers, Power Supplies and HMI's with alternate manufacturers compatible products. (keep I/O and backplane)
- 3. Upgrade/Replace Controllers, I/O, Power Supplies and HMI's with current manufacturers most current compatible products (keep I/O Backplane)
- 4. Upgrade/Replace Controllers, I/O, Power Supplies and HMI's with alternate manufacturers compatible products (keep I/O Backplane)
- 5. Replace Controllers, I/O, Power Supplies and HMI's with current manufacturers most current product.
- 6. Replace Controllers, I/O, Power Supplies and HMI's with alternate manufacturers most current product newer DCS systems

Project Options Considered – Other Components


- Establish Communications with Fairview Riverside Plant
- Replace everything with same as rest of the system or retain existing Allen Bradley PLC Control Systems (Main Plant HVAC & Fuel Oil, Foster House, Macy's)
- Retain existing coax, replace with fiber-optic, or switch to DSL communications for Convention Center Plant
- Install fiber optic or switch to DSL for 1st Avenue Plant
- Include new BMS systems in project scope
- Include instrumentation asset management functionality
- Replace all or portion of instrument wiring.

Selected Configuration

- Replace Controllers, I/O, Power Supplies and HMI's with current or alternate manufacturers most current product for North Riverfront, 1st Ave, Convention Center and Main Plant (Existing Bailey Infi90 systems)
 - > Emerson Delta V was selected.
- Retain existing Allen Bradley control systems at Macy's and Foster House Plants.
- Retain existing Fisher ROC/Single Loop Controller control system at Baker Plant
- Retain existing fiber optic communications with Baker, Macy's and Foster House
- Switch to DSL communications for 1st Ave, Convention Center and Fairview Plants
- Upgrade fiber optics communications interfaces at all connected plants
- Replaced all I/O wiring back to local equipment control panels and majority of standalone instruments

Overview – Selected Configuration

Project Implementation – Schedule

- Initial discussions started in 2009
- Development of project scope was started and stopped multiple times over the next 6 years due to budget constraints and lack of consensus on scope.
- October of 2014 consultant hired to develop project scope
- Proposals solicited fall of 2015
- DCS vendor awarded February of 2016
- System configuration, cabinet construction and FAT complete September of 2016
- Operator training completed in August of 2016
- Phase I NRP and Main Plant HMI's installation started September of 2016
- Phase II 1st Avenue, Convention Center and Foster House plants installation started November of 2016
- Phase III Main plant installation started March of 2017.
- Phase IV installation Fairview Riverside started June of 2017
- Project complete December 2017

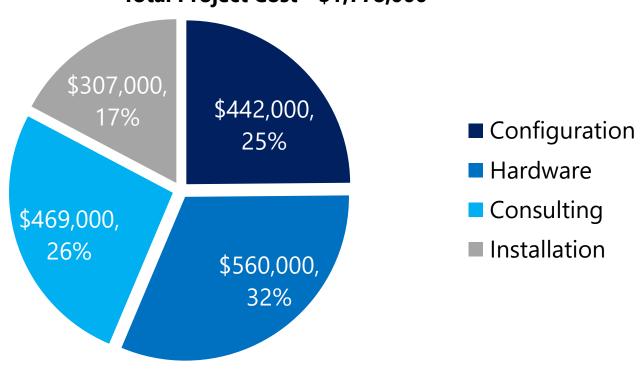
Project Implementation – Key Aspects

- Utilize 3rd Party Consultant to Help Evaluate Current and Future Needs and Support Project Development and Construction
 - Conduct stakeholder meeting
 - Evaluate Potential Vendors
 - Prepare Project Requirements Document and Procurement Specification
 - Provide Technical Support for Design, Installation and Commissioning
 - Develop Project Implementation Plan
- Comprehensive Bid Evaluation Matrix/Scoring
 - Equipment Cost
 - Configuration Cost
 - Schedule
 - > Functionality
 - Life Cycle
 - Support Capabilities
 - Support Cost
 - > Training Cost

Project Implementation – Key Aspects

- Stakeholder meetings to finalize project scope and create buy-in
- Award, Develop and Approve Final Hardware and Configuration Scope Prior to Developing Installation Bid Documents
- Utilize phased approach to installation and commissioning
 - > Avoid overburdening plant operators and I&C staff
 - ldentify unknown/missed items so they can be corrected before the next phase.
- Complete comprehensive Operator training using simulator with actual configuration
- Fully document existing system components and wiring to remain.

Project Implementation Plan Elements


- Stakeholder meetings to final and achieve consensus on project scope
- Prepare project hardware and configuration procurement specifications
- Hardware and configuration bid solicitation, review and selection
- Hardware and configuration submittal review and acceptance
- Prepare project installation specifications
- Installation bid solicitation, review and selection
- Comprehensive off-site Operating training
- Comprehensive Factory Acceptance Testing
- Phased implementation approach
- Complete installation, commissioning and operational break-in period for each phase before commencing next phase
- Small independent North River Front Plant first
- 1st Ave Satellite, and Convention Center Plants next
- Main Plant and Fairview Riverside last

Project Cost

Project Cost Breakdown

System Size

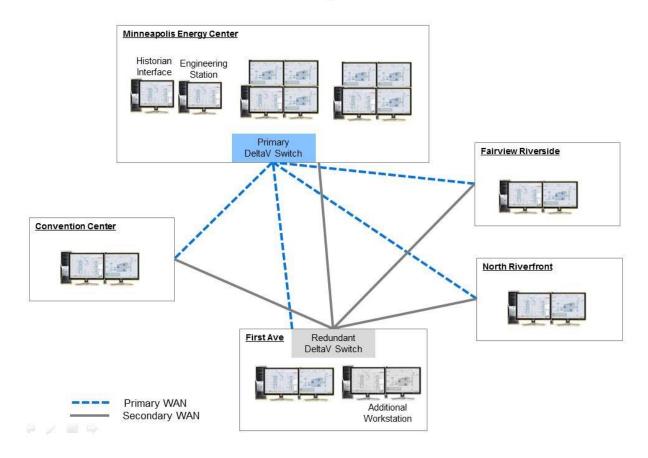
Hardware	Qty	1/0	Qty
Redundant Pairs Controllers	6	Analog I/O	617
Analog I/O Modules	67	Discrete I/O	397
Discrete I/O Modules	66	Pseudo Analog I/O	90
Redundant Pairs Power Supplies	6	Pseudo Discrete I/O	28
Quad Screen Operator Workstations	2		
Dual Screen Operation Workstations	4	Control Points	Qty
Engineering/DAQ Workstations	2	Analog Indicators	351
Graphics	Qty	Digital Indicators	247
Process Overview	5	Analog Control Loops	131
Process System	20	Discrete Control Modules	87
Process Unit	22	Custom Control Modules	13

Project Lessons Learned – What We Did Right

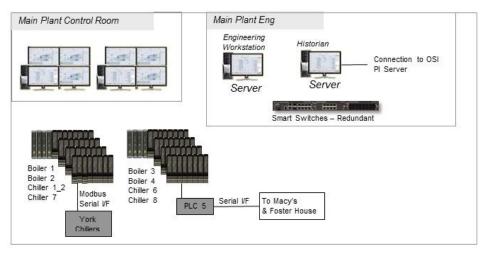
- Utilize knowledgeable 3rd party consultant to guide all phases of the project
- Develop, award and approve final hardware and configuration design prior to developing installation bid documents
- Complete comprehensive off-site operator training in advance of initial implementation
- Utilize phased approach to prevent overburdening operations personnel and to identify unknown/missed items to be corrected before next phase
- Involve as many plant operations personnel as possible in system commissioning.
- Accurately document and label existing I/O and wiring and terminations

Lessons Learned – What We Did Wrong

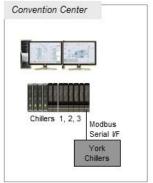
- Assign project manager (preferably 3rd party) to take the lead on developing initial draft scope vs trying to develop scope by committee.
- Start with one on one interviews with various stakeholders
- Don't overload stakeholders with too much information break scope into distinct smaller categories and reach consensus in steps.
- Start discussions with 3rd party communication vendors as soon as possible and leave sufficient time in schedule to secure service

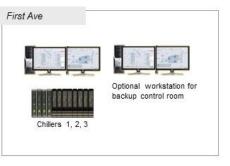

Thank You

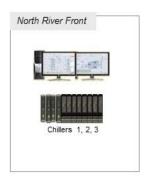
Questions?

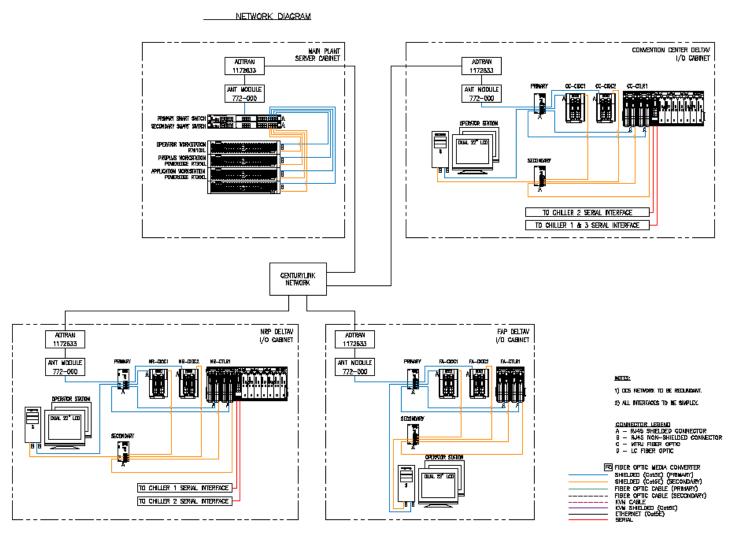

Project Network Configuration

WAN – Communication Redundancy



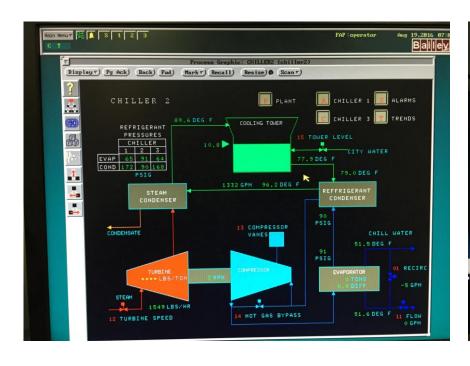

Project Network Configuration


DeltaV Architecture Diagram – Final Phase of Phased Implementation

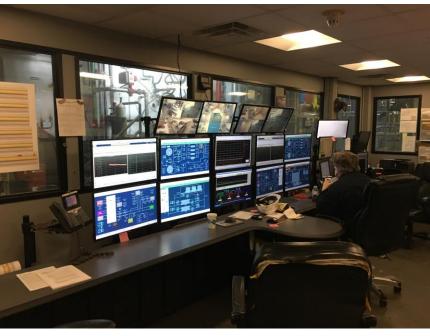


Project Network Configuration

EXISTING SYSTEM


NEW SYSTEM

EXISTING SYSTEM GRAPHICS


NEW SYSTEM GRAPHICS

EXISTING SYSTEM

NEW SYSTEM

