

Andrew Haden

President, Wisewood Energy

IDEA 2019: The Energy for More Resilient Cities

June 26th, 2019

Pittsburg, Pennsylvania

IDEA 2019 PROJECT BACKGROUND: INTEGRATION OF TECHNOLOGIES

University wants to produce as much energy as it uses

Campus has 'Net Zero' plan for expansion

FOCUS ON ENERGY

- Master campus planning begins with the Long Range Development Planning (LRDP) team
- University receives funds from 2016 USDA Forest
 Service Wood Innovations Funding to study biomass
 feasibility alongside master planning
- Wisewood Energy retained to provide biomass analysis for realistic campus scenarios
- LRPD team develops five energy efficiency scenarios, and recommends biomass central heating
- Wisewood Energy uses LRPD data to conduct biomass analysis

THERMAL ENERGY TECHNOLOGIES CONSIDERED

OPTION

EVALUATED?

ELECTRIC ENERGY TECHNOLOGIES CONSIDERED

OPTION

EVALUATED?

LRDP ENERGY SCENARIOS

SCENARIO	DESCRIPTION	CAMPUS EUI (KBTU/SF/YR)	GEOTHERMAL	PV FITS ON CAMPUS	ANNUAL HEAT DEMAND
GOOD	 Biomass central heat Distributed cooling Buildings designed to code 	79	No	No	62.7 MMBtu
BETTER	 Biomass central heat Distributed cooling Buildings exceed code 	56	No	Maybe	48.0 MMBtu
BETTER +	 Biomass and geoexchange central heating and cooling Buildings exceed code 	49	Yes	Maybe	48.0 MMBtu
BEST	 Biomass central heat Distributed cooling Buildings passive as applicable 	38	No	With and	ter + Without the ons District
BEST +	 Biomass and geoexchange central heating and cooling Buildings passive as applicable 	33	Yes	Yes	29.5 MMBtu

BIOMASS SYSTEM SIZING

- Determine optimum biomass boiler size for efficiency and effectiveness
- 70% biomass heating, 30% geoexchange heating (100% geoexchange cooling)
- Design biomass for full campus buildout; realistic construction would be in phases

BIOMASS ANALYSIS DIRECTIONS: BETTER +

SHIFTING TO BIOMASS CHP

- Financial incentives exist when electricity is generated, unavailable if heat only
- Reliable options well suited to a campus scale
- Existing Energy Systems Lab that focuses on advanced internal combustion engines and unconventional fuels, but has no physical lab space on campus

GASIFIER

ORGANIC RANKINE CYCLE

- 200, 300, 400, 500kW modules
- 30% eff. electricity production
- 8,000+ operating hours
- Produces biochar, an organic agriculture amendment

- 35, 100kW modules
- 8% eff. electricity production
- 8,000+ operating hours
- Produces low temp hot water

BETTER + WITH INNOVATIONS DISTRICT

(FULL BUILDOUT)

BETTER + ANALYSIS

(WITH INNOVATIONS DISTRICT)

	PHAS	SE 1	PHASE 2		
	HEAT ONLY	СНР	HEAT ONLY	СНР	
TOTAL CAMPUS HEAT DEMAND	27,500 MMBtu/Yr	Same	70,500 MMBtu/Yr	Same	

PHASE 2 – ORC CHP ISO

PHASE 2 – ORC CHP ISO

PHASE 2 – GASIFIER PARTIAL ISO

PHASE 2 – GASIFIER PLAN VIEW

NEXT STEPS

- University is further developing conceptual design of geoexchange system options (ground vs water)
- University is undergoing internal process to determine whether to incorporate biomass into CUP
- If pursuing biomass, next step is to select heat-only or CHP, then refine system configuration and sizing

WHAT DID WE LEARN?

- Efficiencies and cross-team understanding could have been improved if biomass option was incorporated more directly into LRDP process.
- Wood energy can be contentious important to select appropriate technology and ground discussion in realistic scenarios.
- Optimizing across technologies is complex, but compelling! Takes vision and leadership to carry.

SAN TECHNOLOGY IN SERVICE OF COMMUNITY AND ENTITY OF COMMUNITY AND SAND THE CHANGE OF COMMUNITY OF COMMUNITY

