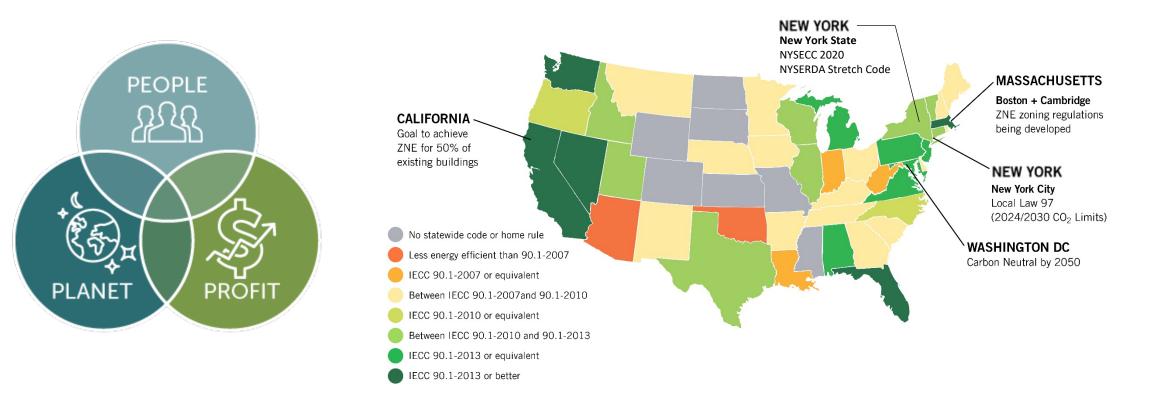
Energy Recovery and Utilization for a Mixed-Use Building

Andrew Kozak, PE, AEE Fellow: Engineer of Record

Principal, Director of Mechanical Engineering 646.205.7207 AKozak@brplusa.com

Anthony Thompson, LEED BD+C, EMIT: Energy Modeling & System Design

HVAC/ENERGY Engineer 646.205.7315 AThompson@brplusa.com



105 Madison Ave, 10th Floor New York, NY 10016 www.brplusa.com

MOTIVATION FOR ENERGY RECOVERY

MIXED-USE SPACE

- *Definition:* a space with multiple **differing end-uses.**
- The IECC addresses mixed occupancies by stating that:
 - Commercial occupancies must comply with the commercial portion of the code¹.
 - Residential occupancies must comply with the residential portion of the code¹.
- Indoor air quality and ventilation parameters are set to meet the ASHRAE 62.1-2016 standard⁴.
- The range of thermal and RH space conditions are dictated by the ASHRAE 55-2017⁵ or the ASHRAE 170-2017 standards⁶.

COMPLEXITIES OF A MIXED-USE SPACE

- Multiple building-use types
 - i.e. Residential, Retail, Athletics, Performing Arts and/or Healthcare
- Multiple code requirements

- Differing design conditions
 i.e. RH%, temperature
- Differing **occupancy** schedules

B5

MIXED-USE SPACE TYPES

- Example: NYU Mercer
 - Student tower
 - Faculty tower
 - Athletics
 - Classrooms
 - Performing Arts
 - Theater

IMAGE COURTESY OF DAVIS BRODY BOND ARCHITECTS

MIXED-USE SPACE: STUDENT TOWER

- Residential code
- Higher RH% set-point than faculty tower, gym, and classrooms
- Load peaks in evening and morning



IMAGE COURTESY OF DAVIS BRODY BOND ARCHITECTS

MIXED-USE SPACE: FACULTY TOWER

- Greater occupant temperature control
- Residential code

IMAGE COURTESY OF DAVIS BRODY BOND ARCHITECTS

MIXED-USE SPACE: ATHLETICS

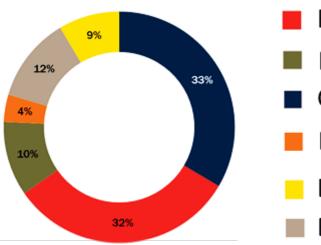
- Low discharge RH% required
- Large zones
- Varying occupancy
- Six lane pool

IMAGE COURTESY OF DAVIS BRODY BOND ARCHITECTS

MIXED-USE SPACE: CLASSROOMS & THEATRES

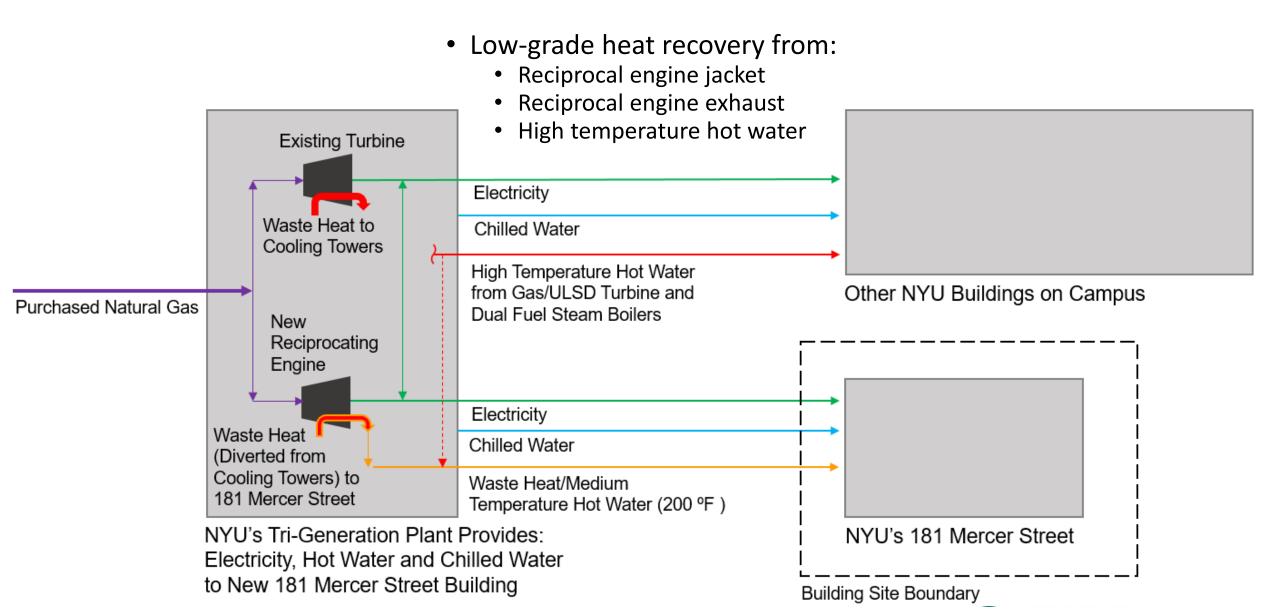
- Load peaks during the day
- Large swings in occupancy
- CO₂ control

IMAGE COURTESY OF DAVIS BRODY BOND ARCHITECTS



ENERGY USE OVERVIEW

Energy Use Characterization


- Heating
- Pumps + FansCooling
- DHW
- Lights
- | Equipment

• Air handling units consume 39% of total building energy

ENERGY RECOVERY IN A COGENERATION SYSTEM

TRI-GENERATION PLANT CHARACTERISTICS

- NYU's tri-generation plant
 - *Decreases greenhouse gas emissions by 23%²
 - *Reduced air pollutants by 68%²
 - Approaches 90% energy efficiency²

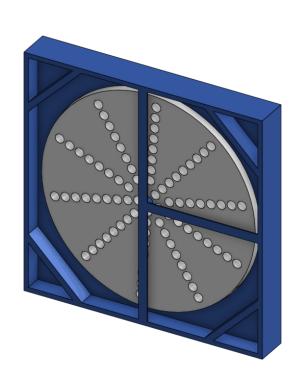
• Electricity

- Powers 22 NYU buildings
- Two 5.5MW gas turbines, one 2.4MW steam turbine

Chilled water

- Turbine-driven chiller
- 2,000 tons from centrifugal chillers
- 8,000 tons from electric chillers
- Hot water
 - Provided to 37 buildings

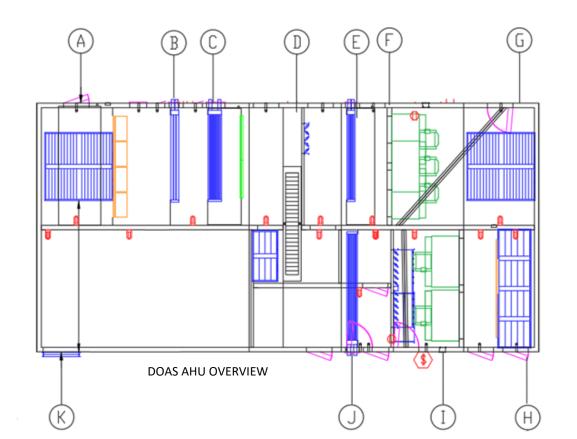
*Compared to its 30-year-old, oil-fired CoGen predecessor



ENERGY RECOVERY AT AHU LEVEL

- Ability to **recycle energy** from a waste-source
 - Spill air

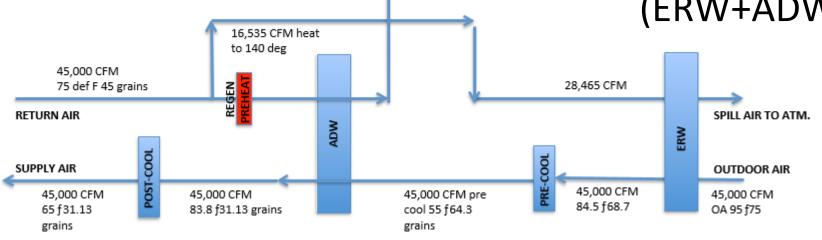
- Equipment:
 - Enthalpy and Mass Energy Recovery Wheel (**ERW**)
 - Active desiccant wheel using waste heat (ADW)
 - Glycol run-around coil


BRA PURPOSE OF DOAS AT 181 MERCER ST.

- To supply ventilation air directly to occupied spaces
- Decouple the exact method in which sensible and latent interior HVAC loads are addressed
 - Temperature and RH set points are satisfied independently
- Reduce the total energy required to maintain the desired space conditions within the building

A=Supply Inlet D=ADW G=Supply Outlet J=Regen Coil

B=Preheat Coil E=Post-Cool Coil H=Regen Inlet K=Regen Outlet C=Precool Coil F=Supply Fans I=Return Fan


SYSTEM SELECTION

WARM, WET AIR TO ATM.

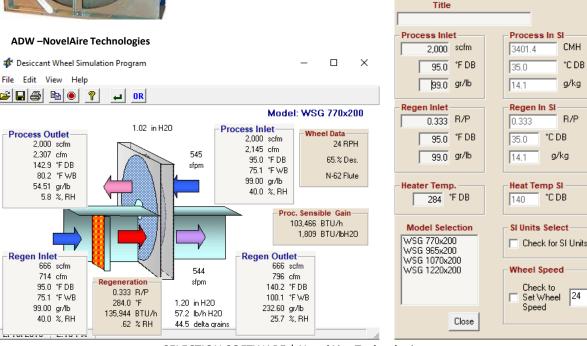
- Student Tower
 - ERW+FCUs
- Faculty Tower

• ERW+FCUs

- Gymnasium
 - DOAS Dual-wheel (ERW+ADW)
- Classroom
 - DOAS Dual-wheel (ERW+ADW)

SYSTEM ADVANTAGES

- Enthalpy and mass energy recovery wheel
 - Significantly reduce
 preheat load
 - Free **humidification** in Winter
 - Decreases precool load



SYSTEM ADVANTAGES

- Active desiccant wheel
 - Uses heated air to **remove** humidity in the vapor phase
 - Fired by waste heat
 - Scalable: Wheels range in size up to ~45,000 CFM

SELECTION SOFTWARE | NovelAire Technologies

C. Inputs

CMH

°C DB

g/kg

R/P

°C DB

g/kg

°C DB

Check to

Speed

Set Wheel 24

 \times

NEW SYSTEM PERFORMANCE

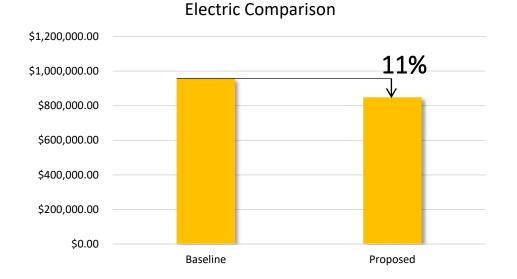
- 25% energy savings over NYCECC
- 40% energy-cost reduction compared to baseline using LEED v4 New Construction³

4 Purchased Energy Rates							
Fuel	Utility Rate Provider/Rate Structure (i.e ConEd)	Virtual Utility Rate (\$/unit)	Baseline Design Total Charge (\$)	Virtual Utility Rate (\$/unit)	Proposed Design Total Charge (\$)	Supporting Doc. Location	Model Output Report
Electric	Trigen Plant - Elec	\$0.14	\$ 956,953.62	\$0.13	\$ 848,374.00	Utility Rates Presentation	Cooled Chiller
Gas	Nat Gas	\$0.63	\$ 14,874.00	\$0.63	\$ 14,874.00	NYU Gas Rate Derivation	IES-D
Steam	District Hot Water	1.215	\$ 310,278.50	1.059	\$ 304,670.00	Utility Rates Presentation	ES-D
Other:	District Chilled Water	19.16	\$ 668,399.00	9.33	\$ 249,605.49	COST SAVINGS	COMPLIES?
TOTAL			\$ 1,950,505.1	2	\$ 1,417,523.49	\$ 532,981.63	COMPLIES



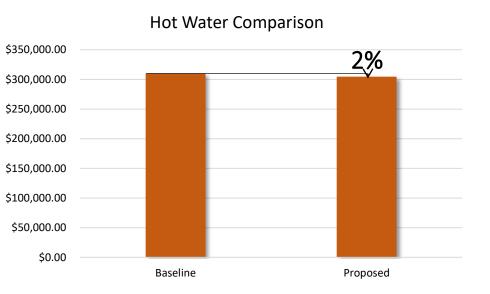
CHILLED WATER: ANNUAL SAVINGS

- Chilled water savings:
 - ERW reduces precool load
 - Increased ΔT lowers flow rate, decreasing pumping energy at campus level plant



ELECTRICITY: ANNUAL SAVINGS

- Electricity savings:
 - Decreased fan energy using FPUs for sensible loads



HOT WATER: ANNUAL SAVINGS

- Hot water savings:
 - Generated by <u>low-grade waste heat</u>
 - Reduced preheat load using ERWs
 - Free humidification from ERW
 - Need for reheat at the zone level is minimized
 - Consistent load throughout year
- Hot water load increase:
 - ADW uses heat for dehumidification
 - Primary/secondary systems increase ΔT to plant

LESSONS LEARNED: BUILDING LEVEL

- DOAS provides first cost and operational cost savings
- Use of **8,760hr modeling methods** and post-processing of data to optimize equipment selections
- Sensors, controls, and continuous commissioning are key to attaining and preserving energy conservation goals
- Future Building AHU equipment is subject to continuous incremental performance improvements as new technology becomes available

LESSONS LEARNED: CAMPUS LEVEL

- Building level equipment selections improve ΔT to plant equipment
 - Lower pump flow
 - Higher equipment efficiency
- Active desiccant wheel regeneration provided by reciprocating engine heat throughout year

WORKS CITED

- [1] Building Energy Codes Program, U.S. Department of Energy, 2015.
- [2] NYU Switches on Green CoGen Plant and Powers Up for the Sustainable Future, NYU, 2011.
- [3] LEED v4 Edition, USGBC, 2013.
- [4] The Standards for Ventilation and Indoor Air Quality, ASHRAE 62.1, 2016.
- [5] Thermal Environmental Conditions for Human Occupancy, ASHRAE 55, 2017.
- [6] Healthcare Facilities Resources, ASHRAE 170, 2008.
- [7] ECC Compliance Utility Rates, Presentation to D.O.B., BR+A, 2018.

105 Madison Ave, 10th Floor New York, NY 10016 www.brplusa.com

Andrew Kozak, PE, AEE Fellow

Principal, Director of Mechanical Engineering 646.205.7207 AKozak@brplusa.com

Anthony Thompson, LEED BD+C, EMIT

HVAC/ENÉRGY Engineer 646.205.7315 AThompson@brplusa.com

