Brookfield Place

CHW Optimization ay

EXISTING PLANT

- Built in early/mid 1980s
- 15,000 Ton Plant
- (10) 1,500 Ton Constant Speed Chillers
- River Water Heat Rejection via 11 titanium PFHXs and 8 VT pumps
- 47 CW/TES/CHW Pumps
- (13) 280,000 Gallon TES Tanks
- Roughly 30,000 Ton-hrs +/-
- Three CHW distribution loops
- Building A, B Winter Garden
- Building C
- Building D

www.smith-eng.com

ISSUE - TWO OPTIONS

1. Option $1-\$ 18 \mathrm{MM}$

- New Chiller
- New Latent thermal storage (Ice)
- Pros - New equipment
- Cons - High capex, more invasive (Plant shutdown), rigging challenge, schedule challenge

2. Option $2-\$ 11 \mathrm{MM}$

- Rebuild existing chillers with VFDs
- Optimized existing sensible thermal storage
- Pros - No plant shutdown, lower capex, higher ROI, continue to use sensible TES, eliminate rigging issue, reduced schedule
- Cons - No new equipment; however, compete overhaul

CHW PLANT OPTIMIZATION

1. Chiller Refurbishment with new tubes and VFDs on seven chillers
2. Chiller Plant Controls Optimization - Work with your new controls system

- Benefits/Scope
- No Black Box Controls Optimization
- Personnel Training to Ensure Success
- Primary Pump VFDs
- TES Optimization
- Improve load DT

3. Preliminary Analysis

- Existing Average Plant kW/Ton = 1.2

Option	Optimization and Chiller Rebuild
Energy Savings (kWh)	$6,937,594$
Peak Power Reductions (kW)	3,281
First Cost (\$)	$(11,489,000)$
Estimated Rebate (\$)	$3,280,695$
Net CapEX (\$)	$(8,208,305)$
Annual Energy Savings (\$)	$1,290,355$
Simple Payback (Years)	(6.26)

- Proposed Average Plant kW/Ton $=0.75$

ENERGY - ELECTRIC - USAGE

250 Vesey Electric Consumption 2018

- The electrical utility use peaks in the summer.
- The net MWh for 12 months is 62,160 MWh

INTERNATIONAL DISTRICT ENERGY ASSOCIATION

ENERGY - ELECTRIC - DEMAND

250 Vesey Electric Demand 2018

- The electrical utility demand peaks in the summer.
- The peak power for 12 months is 16.7 MW

SMITH
SIENGINEERING www.smith-eng.com

ENERGY - ELECTRIC - COST

250 Vesey Electric Cost 2018
Cost

- The electrical utility cost peaks in the summer.
- The net electric cost for 12 months is \$8.2MM

CURRENT RATE STRUCTURE

Acc: 49-4011-3020-3003-6			
Rate Structure: EL9 General Large Rate II (ConEd) - 2018			
G\&T Demand Rate	By ConEd Summer (June-Sept, Mon-Fri, 8AM to 6PM)	\$/kW	\$8.23
Primary Demand Rate	By ConEd Summer (June-Sept, Mon-Fri, 8AM to 10PM)	\$/kW	\$15.39
Demand Delivery Rate	By ConEd Non-Summer (Jan-May and Oct-Dec)	\$/kW	\$11.35
Reactive Power Demand Rate	By ConEd If P.F is less than 95%	\$/kW	\$0.00
Energy Delivery Rate	By ConEd All Months	\$/kWh	\$0.023
Energy Supply Rate: Calpine Energy	By Calpine Energy All Months	\$/kWh	\$0.069
Blended Demand Rate	Summer Estimated	(\$/kW)	\$23.62
Blended Demand Rate	Winter Estimated	(\$/kW)	\$11.35
Blended Energy Rate	All Months Estimated	(\$/kWh)	\$0.093

SMITH
Siengineering
INTERNATIONAL

FEbRUARY $10-14$ \& SHERATON DENVER DOWNTOWN \& DENVER, CO

CHW PUMP OPTIMIZATION

- \quad Stage up at 1.8 and 2.8
- Dwell timer set-point linear reset
- X. $8=2,000 \mathrm{Sec}$
- X. $99=20$ Sec
- \quad Stage down at 1.25 and 2.25
- Dwell timer set-point linear reset
- $X .2=2,000 \mathrm{Sec}$
- X. $01=60 \mathrm{Sec}$

Pumps shall stage on and off based on the following formula.	
Recommended Number of Pumps =A+B*Flow+C*Head+D*Flow^2+E*Head^2+F*Flow*Head	
A	1.23100000000
B	0.00019400000
C	-0.00690000000
D	-0.00000000185
E	0.00001390000
F	0.00000008000

- If pumps speed reaches $\mathbf{9 0 \%}$ stage up.

CampusEnergy2020
THE POWER TOCHANGE
FEBRUARY 10-14 a SHERATON DENVER DOWNTOWN \& DENVER. CO

Brookfield
 10 Properties

SMITH
SIENGINEERING
www.smith-eng.com

INTERNATIONAL DISTRICT ENERGY ASSOCIATION

PCHWP - VFDS

Before

- 30kW reduction * 6 Pumps = 180kw
- $180 \mathrm{kw}=51$ Tons of Heat @ $0.5 \mathrm{~kW} / \mathrm{Ton}=\mathrm{an}$ additional 25 kW reduction
- Total reduction $=205 \mathrm{~kW}$

After

 Properties

Primary Pump

Secondary Pump

DECOUPLER

DECOUPLER

CONSTANT SPEED PRIMARY PUMPING

DECOUPLER

TES HX - PLATE ADDITION

$$
\begin{gathered}
Q=U * A * L M T D \\
5,404 \mathrm{kbtu}=1,103 * 2,442 * 2.01 \\
Q=U * \Uparrow 33 \% A * \backsim 33 \% L M T D
\end{gathered}
$$

TES TANK - IMPROVED DT

- Roughly 30,000 Ton-hrs
- Every degree of DT is
about 2,000 Ton-Hrs of
additional storage with
the existing system
- Increased by
- Storing colder
- Warmer CHWR
- Increased storage volume

Before				Before (F)	After (F)	Increase \%	Increase F
	Supply	Buildif Return					
A - Tower	41.9	$50.6{ }^{\circ}{ }^{\circ} \mathrm{F}$	A	8.7	12.4	43\%	3.7
B - Tower	42.5	$55.9{ }^{\circ}{ }^{\circ} \mathrm{F}$	B	13.4	14.7	10\%	1.3
C - Tower	$\frac{40.2}{41.3}$	54.2	C	14	15.4	10\%	1.4
WG -	42.0	$54.9{ }^{\circ} \mathrm{F}$	D		16.2	8\%	
			D	15	16.2	8\%	1.2
Aft			WG	12.9	19.1	48\%	6.2

TES TANKS - LEVEL SENSORS

- New Level Sensors allow:
- Higher Tank Fill
- Lower Tank Draw
- Allows for an additional 1-2 feet
- Previous was roughly 9' draw down
- 10\% - 20\% more total capacity

SMITH
SENGINEERING Properties

FEBRUARY $10-14$ \& SHERATON DENVER DOWNTOWN \& DENVER. CO

TES OPERATION - EXISTING
EXISTING WITH 449 PLATE PER HX (4 HEAT EXCHANGERS)

- Tank Capacity $=((52.0 F-45.0 F) * 3,000,000$ Gallons * 1 BTU/LB-F * 8.34 LB/Gallon / 12,000 втUн/Ton)) $=14,595$ Ton-Hrs
- Much lower than the design capacity of 30k ton-hours

- Tank Capacity $=((55.4 F-42.0 F) * 3,300,000$ Gallons * 1 BTU/LB-F * 8.34 LB/Gallon / 12,000 BTUH/Ton)) $=27,522$ Ton-Hrs
- Much closer to the design capacity of 30 k ton-hours

SMITH
SiENGINEERING
INTERNATIONAL DISTRICT ENERGY Properties

CHILLER UPGRADE - RETUBE

Before

After

	Before	After	Reduction
Evap Approach (F)	4.2	1.3	2.9
Cond Approach (F)	7	3.3	3.7
Total Approach (F)	11.2	4.6	6.6

Brookfield	
Properties	22 Carrier

This approach improvement results in a 12\% to 40% lift and power reduction.

CHILLER UPGRADE - NEW VFD COMPRESSOR

Carrier 19XRV Chiller

Chiller Efficiency Map (kW/Ton) Chiller Percent Load (Load/Design Load)

ASHRAE 90.1 Compliant Rebuild

	Existing	New	Reduction
Chiller kW/Ton	0.75	0.525	0.225
Tons	10,000	10,000	
kW	7500	5250	2,250

Connected Services

CHILLER SCREEN

Brookfield Properties
26
Carrier

RESULTS

August Day Pre and Post

RESULTS

250 Vesey Electric Demand 2018/2019

- The peak power for 2018 was 16.7 MW
- The peak power for 2019 was 12.2 MW
- 4.5 MW Reduction!
29
Carrier

SMITH
SiENGINEERING www.smith-eng.com

PROJECT RESULTS

	Estimated	Actual
Option	Optimization and Chiller Rebuild	Optimization and Chiller Rebuild
Energy Savings (kWh)	$5,975,274$	$9,309,800$
Demand Window Power Reductions (kW)	3,377	
First Cost (\$)	$(\$ 11,489,000.00)$	$(\$ 11,381,414.01)$
Rebate (\$)	$\$ 3,377,094.21$	$\$ 4,090,180.64$
Net CapEX (\$)	$\$ 8,111,905.79)$	$(\$ 7,291,233.37)$
Annual Energy Savings (\$)	$\$ 1,220,254$	$\$ 1,760,935$
Simple Payback (Years)	6.86	4.14
* During Demand Management Program Window.		

Month	Cost (\$)			Demand (kW)			Project Status
	2018	2019	Reduction	2018	2019	Reduction	
Jun	$\$ 1,165,581$	$\$ 941,356$	$\$ 224,225$	13,584	11,136	2,448	40% Complete
Jul	$\$ 1,481,759$	$\$ 1,189,061$	$\$ 292,698$	15,840	12,720	3,120	60% Complete
Aug	$\$ 1,521,453$	$\$ 1,121,589$	$\$ 399,864$	15,936	12,144	3,792	90% Complete

