

14 Acre, 5-building, 8M Sq Ft, mixed use complex on the Hudson River in Lower Manhattan.

- 200 Liberty 1.6M SF
- 225 Liberty 2.5M SF
- 200 Vesey 2.3M SF
- 250 Vesey 1.6M SF
- Winter Garden Atrium

Plant is in basement of 250
 Vesey

EXISTING PLANT

- Built in early/mid 1980s
- 15,000 Ton Plant
 - (10) 1,500 Ton Constant Speed Chillers
- River Water Heat Rejection via 11 titanium PFHXs and 8 VT pumps
- 47 CW/TES/CHW Pumps
- (13) 280,000 Gallon TES Tanks
 - Roughly 30,000 Ton-hrs +/-
- Three CHW distribution loops
 - Building A, B Winter Garden
 - Building C
 - Building D

ISSUE - TWO OPTIONS

- 1. Option 1 \$18MM
 - New Chiller
 - New Latent thermal storage (Ice)
 - Pros New equipment
 - Cons High capex, more invasive (Plant shutdown), rigging challenge, schedule challenge
- 2. Option 2 \$11MM
 - Rebuild existing chillers with VFDs
 - Optimized existing sensible thermal storage
 - Pros No plant shutdown, lower capex, higher ROI, continue to use sensible TES, eliminate rigging issue, reduced schedule
 - Cons No new equipment; however, compete overhaul

CHW PLANT OPTIMIZATION

- 1. Chiller Refurbishment with new tubes and VFDs on seven chillers
- 2. Chiller Plant Controls Optimization Work with your new controls system
 - Benefits/Scope
 - No Black Box Controls Optimization
 - Personnel Training to Ensure Success
 - Primary Pump VFDs
 - TES Optimization
 - Improve load DT
- 3. Preliminary Analysis
 - Existing Average Plant kW/Ton = 1.2
 - Proposed Average Plant kW/Ton = 0.75

Option	Optimization and Chiller Rebuild		
Energy Savings (kWh)	6,937,594		
Peak Power Reductions (kW)	3,281		
First Cost (\$)	(11,489,000)		
Estimated Rebate (\$)	3,280,695		
Net CapEX (\$)	(8,208,305)		
Annual Energy Savings (\$)	1,290,355		
Simple Payback (Years)	(6.26)		

ENERGY – ELECTRIC - USAGE

- The electrical utility use peaks in the summer.
- The net MWh for 12 months is 62,160
 MWh

ENERGY – ELECTRIC - DEMAND

- The electrical utility demand peaks in the summer.
- The peak power for 12 months is 16.7MW

ENERGY – ELECTRIC - COST

Cost

- The electrical utility cost peaks in the summer.
- The net electric cost for 12 months is \$8.2MM

CURRENT RATE STRUCTURE

Acc: 49-4011-3020-3003-6						
Rate Structure: EL9 General Large Rate II (ConEd) - 2018						
G&T Demand Rate	By ConEd Summer (June-Sept, Mon-Fri, 8AM to 6PM)	\$/kW	\$8.23			
Primary Demand Rate	By ConEd Summer (June-Sept, Mon-Fri, 8AM to 10PM)	\$/kW	\$15.39			
Demand Delivery Rate	By ConEd Non-Summer (Jan-May and Oct-Dec)	\$/kW	\$11.35			
Reactive Power Demand Rate	By ConEd If P.F is less than 95%	\$/kW	\$0.00			
Energy Delivery Rate	By ConEd All Months	\$/kWh	\$0.023			
Energy Supply Rate: Calpine Energy	By Calpine Energy All Months	\$/kWh	\$0.069			
Blended Demand Rate	Summer Estimated	(\$/kW)	\$23.62			
Blended Demand Rate	Winter Estimated	(\$/kW)	\$11.35			
Blended Energy Rate	All Months Estimated	(\$/kWh)	\$0.093			

CHW PUMP OPTIMIZATION

- Stage up at 1.8 and 2.8
 - Dwell timer set-point linear reset
 - X.8 = 2,000 Sec
 - X.99 = 20 Sec
- Stage down at 1.25 and 2.25
 - Dwell timer set-point linear reset
 - X.2 = 2,000 Sec
 - X.01 = 60 Sec
- If pumps speed reaches 90% stage up.

Pump	Pumps shall stage on and off based on the following formula.				
Recor	Recommended Number of Pumps =A+B*Flow+C*Head+D*Flow^2+E*Head^2+F*Flow*Head				
Α	1.23100000000				
В	0.00019400000				
С	-0.00690000000				
D	-0.0000000185				
E	0.00001390000				
F	0.000000080000				

PCHWP - VFDS

Before

- 30kW reduction * 6 Pumps = 180kw
- 180kw = 51 Tons of Heat @
 0.5kW / Ton = an additional
 25kW reduction
- Total reduction = 205kW

After

DECOUPLER CONSTANT SPEED PRIMARY PUMPING

Primary Pump Secondary Pump

Properties

SMITH SENGINEERING www.smith-eng.com

CampusEnergy2020

THE POWER TO CHANGE

Properties

Carrier

SENGINEERING

www.smith-eng.com

TES HX - PLATE ADDITION

$$Q = U * A * LMTD$$

5,404kbtu = 1,103 * 2,442 * 2.01

$$Q = U *1 33\% A *1 33\% LMTD$$

TES TANK - IMPROVED DT

- Roughly 30,000 Ton-hrs
- Every degree of DT is about 2,000 Ton-Hrs of additional storage with the existing system
 - Increased by
 - Storing colder
 - Warmer CHWR
 - Increased storage volume

Deic	ore			2	Before	After (E)	Increase %	Increase
Buildi Supply Return			(F)	F) Arter (F)	increase %	F		
A - Tower	41.9	oF	50.6 °F	Α	8.7	12.4	43%	3.7
B - Tower	42.5	°F	55.9 °F	В	13.4	14.7	10%	1.3
C - Tower	40.2	°F	54.2 °F 56.3 °F	1	14	15.4	10%	1.4
WG -	42.0	oF	54.9 °F	2		-	8%	-
SECTION STATES				U	15	16.2	0%	1.2
V tt	~ r			WG	12.9	19.1	48%	6.2

After

Doforo

TES TANKS - LEVEL SENSORS

- New Level Sensors allow:
 - Higher Tank Fill
 - Lower Tank Draw
- Allows for an additional 1-2 feet
- Previous was roughly9' draw down
- 10% 20% more total capacity

TES OPERATION - EXISTING

EXISTING WITH 449 PLATE PER HX (4 HEAT EXCHANGERS)

- Tank Capacity = ((52.0F 45.0F) * 3,000,000 Gallons * 1 BTU/LB-F * 8.34 LB/Gallon / 12,000 BTUH/Ton)) = 14,595 Ton-Hrs
- Much lower than the design capacity of 30k ton-hours

TES OPERATION - NEW

EXISTING WITH 600 PLATE PER HX (4 HEAT EXCHANGERS)

- Tank Capacity = ((55.4F 42.0F) * 3,300,000 Gallons * 1 BTU/LB-F * 8.34 LB/Gallon / 12,000 BTUH/Ton)) = 27,522 Ton-Hrs
- Much closer to the design capacity of 30k ton-hours

CHILLER UPGRADE - RETUBE

Before

CHW IN CHW OUT EVAP REF 48.2 40.1 35.9 CDW IN COND REF 73.8 79.9 86.9 **OILPRESS** AMPS % 31.6 136.0 74.7

After

This approach improvement results in a 12% to 40% lift and power reduction.

	Before	After	Reduction
Evap Approach (F)	4.2	1.3	2.9
Cond Approach (F)	7	3.3	3.7
Total Approach (F)	11.2	4.6	6.6

CHILLER UPGRADE – NEW VFD COMPRESSOR

Carrier 19XRV Chiller

ASHRAE 90.1 Compliant Rebuild

	Existing	New	Reduction
Chiller kW/Ton	0.75	0.525	0.225
Tons	10,000	10,000	
kW	7500	5250	2,250

Use more plates per chiller to reduce CWS to chiller, reducing lift and reducing compressor power

CHILLER SCREEN

RESULTS

RESULTS

- The peak power for 2018 was 16.7 MW
- The peak power for 2019 was 12.2 MW
- 4.5 MW Reduction!

PROJECT RESULTS

	Estimated	Actual	
Option	Optimization and Chiller Rebuild	Optimization and Chiller Rebuild	
Energy Savings (kWh)	5,975,274	9,309,800	
Demand Window Power Reductions (kW)	3,377	5,162*	
First Cost (\$)	(\$11,489,000.00)	(\$11,381,414.01)	
Rebate (\$)	\$3,377,094.21	\$4,090,180.64	
Net CapEX (\$)	(\$8,111,905.79)	(\$7,291,233.37)	
Annual Energy Savings (\$)	\$1,220,254	\$1,760,935	
Simple Payback (Years)	6.86	4.14	
* During Demand Management Program Wi	ndow.		

	Cost (\$)				Demand (k			
Month	2018	2019	Reduction	2018	2019	Reduction	Project Status	
Jun	\$ 1,165,581	\$ 941,356	\$ 224,225	13,584	11,136	2,448	40% Complete	
Jul	\$ 1,481,759	\$ 1,189,061	\$ 292,698	15,840	12,720	3,120	60% Complete	
Aug	\$ 1,521,453	\$ 1,121,589	\$ 399,864	15,936	12,144	3,792	90% Complete	

